Sep., 2009

3-溴-6-甲基哒嗪的结构、光谱和热力学性质*

徐友辉

(四川职业技术学院 建筑与环境工程系,四川 遂宁 629000)

【摘 要】3-溴-6-甲基哒嗪是一种新近合成的哒嗪重要衍生物,从理论上对其结构、光谱和热力学性质的研究还未见报道。采用 Gaussian03 计算程序在 B3LYP/6-311++G**水平对 3-溴-6-甲基哒嗪进行结构优化和频率、热力学性质计算,得到它们的红外光谱以及热容、熵、焓等热力学性质与温度之间的函数关系式,有助于哒嗪类化合物的合成及其它性质研究。

【关键词】3-溴-6-甲基哒嗪;结构;光谱;热力学性质;密度泛函理论

【中图分类号】TQ463 【文献标识码】A 【文章编号】1673-1891(2009)03-0060-03

1 引言

哒嗪是一类重要的芳香杂环化合物,是农药、医药等具有生物活性化合物的重要结构单元,具有较强的降压、强心、抗病毒、抗癌等生理活性。将不同基团引入到哒嗪结构中,能产生具有杀菌活性的哒嗪类衍生物,使其在新型高效药物研制中起着重要作用[1]。近年来对哒嗪类化合物的研究已成为一个重要的领域[2-3],人们在哒嗪类化合物的合成及生物活性研究等方面取得了许多成果[4-8]。

3-溴-6-甲基哒嗪是一种重要的哒嗪类衍生物,最近被辛炳炜等人合成出来^[4],从理论上对其结构、光谱和热力学性质的研究还未见报道,应用量子化学的理论方法对3-溴-6-甲基哒嗪的结构、光谱进行理论计算,进而获得无实验数据的热力学函数,显得很有必要。

密度泛函理论 B3LYP方法被广泛用于化学问题的计算研究[9-13]。本文采用 Gaussian03 计算程序在B3LYP/6-311++G**水平对3-溴-6-甲基哒嗪进行几何结构优化和频率、热力学性质计算,得到它们的红外光谱以及热容、熵、焓等热力学性质与温度之间的函数关系式,有助于哒嗪类化合物的合成及其它性质研究。

2 结果和讨论

2.1 平衡结构分析

在 B3LYP/6-311++G**水平对 3-溴-6-甲基哒嗪分子进行几何结构优化和频率计算,得到它的稳定构像,如图1所示,其结构参数见表1。

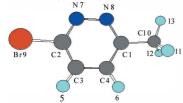


图 1 3-溴-6-甲基哒嗪的稳定结构

由图1和表1可以看出,3-溴-6-甲基哒嗪分子中 Br与六元环处于同平面内,整个分子具有Cs对称性。

分子的电子结构与分子的稳定性密切相关,特别是最高占据 HOMO 轨道和最低空 LUMO 轨道的成键方式与形状直接反映化学键的结构特点,通过分析可以得到分子几何结构信息。分子前线轨道的能隙(LUMO 轨道与 HOMO 轨道能量差)越大,分子稳定性越高¹⁹。B3LYP/6-311++G**水平计算得到3-溴-6-甲基哒嗪基态 ¹A分子的前线轨道的能隙为474.848 kJ/mol,能隙较大,说明3-溴-6-甲基哒嗪基态分子进行电子跃迁较难,稳定性较高。

2.2 红外光谱分析

对3-溴-6-甲基哒嗪分子进行红外光谱计算,计算结果如图2所示。

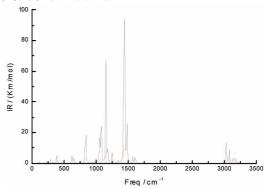


图 2 3-溴-6-甲基哒嗪分子的红外光谱

图 2 显示的 3-溴-6-甲基哒嗪分子的红外光谱图中,振动频率在800~1100 cm⁻¹范围为弱峰,频率为837cm⁻¹的弱峰是由哒嗪环上的两个C-H键发生面外摇摆产生,频率为1076cm⁻¹的弱峰是由N-N键和C2-C3键发生伸缩引起哒嗪环呼吸收缩产生;振动频率为1151cm⁻¹的中强峰是由哒嗪环收缩振动产生;振动频率为1436cm⁻¹的强峰是由哒嗪环两个C-H键面内摇摆和哒嗪环两个C-N键伸缩振动产生。

收稿日期:2009-06-06

*基金项目:四川省教育厅自然科学基金资助项目(项目编号:08ZC017)。 ?1944年10分:徐发辉(1964年),男,副教授,主要从事有机分子结构、性质的理论研究。http://www.cnki.net

丰 1	3_沪_6_	甲基哒嗪分子的结构参数	
7	フー/完一()ー		

键 长(Å)		键角(°)	二面角(二面角(°)		
R(1,4)	1.4073	A(4,1,8)	121.5913	D(8,1,4,3)	-0.0048		
R(1,8)	1.3342	A(4,1,10)	121.8942	D(8,1,4,6)	-180.0083		
R(1,10)	1.5032	A(8,1,10)	116.5145	D(10,1,4,3)	-179.9892		
R(2,3)	1.4004	A(3,2,7)	124.2965	D(10,1,4,6)	0.0073		
R(2,7)	1.3138	A(3,2,9)	119.362	D(4,1,8,7)	0.0232		
R(2,9)	1.9156	A(7,2,9)	116.3415	D(10,1,8,7)	180.0084		
R(3,4)	1.3757	A(2,3,4)	115.9502	D(4,1,10,11)	-59.6223		
R(3,5)	1.0819	A(2,3,5)	121.3949	D(4,1,10,12)	59.852		
R(4,6)	1.0845	A(4,3,5)	122.655	D(4,1,10,13)	-179.8854		
R(7,8)	1.3378	A(1,4,3)	118.381	D(8,1,10,11)	120.3926		
R(10,11)	1.0941	A(1,4,6)	120.5812	D(8,1,10,12)	-120.1332		
R(10,12)	1.0941	A(3,4,6)	121.0378	D(8,1,10,13)	0.1295		
R(10,13)	1.0892	A(2,7,8)	119.4749	D(7,2,3,4)	-0.0228		
		A(1,8,7)	120.3061	D(7,2,3,5)	-180.0279		
		A(1,10,11)	110.9668	D(9,2,3,4)	180.036		
		A(1,10,12)	110.9666	D(9,2,3,5)	0.0309		
		A(1,10,13)	109.6205	D(3,2,7,8)	0.0417		
		A(11,10,12)	107.5173	D(9,2,7,8)	-180.0155		
		A(11,10,13)	108.852	D(2,3,4,1)	0.0038		
		A(12,10,13)	108.8517	D(2,3,4,6)	180.0073		
				D(5,3,4,1)	180.0089		
				D(5,3,4,6)	0.0124		
				D(2,7,8,1)	-0.0408		

2.3 热力学性质

在振动分析的基础上,基于统计热力学计算得到3-溴-6-甲基哒嗪分子在不同温度下的标准摩尔热容 CPm、标准摩尔熵 Sm、标准摩尔焓 Hm 和标准摩尔自由能 Gm,如表2所示。

由表2可以看出,随着温度的升高,3-溴-6-甲基哒嗪分子的标准摩尔热容 C_{Pm} 、标准摩尔熵 S_m 、标准摩尔焓 H_m 的数值增大,这是由于随温度升高而分子振动加剧所致。这些热力学性质与温度之间存在着一定的函数关系。

表2 3-溴-6-甲基哒嗪分子的热力学性质

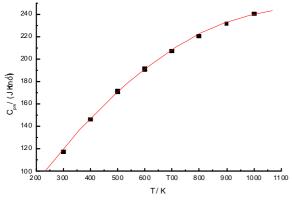
温度T/K	298.15	398.15	498.15	598.15	698.15	798.15	898.15	998.15
$C_{pm}/(J.mol^{-1}.K^{-1})$	117.80	146.65	171.28	191.31	207.49	220.70	231.64	240.81
$S_m/(J.mol^{-1}.K^{-1})$	370.07	408.30	443.88	477.03	507.85	536.51	563.20	588.14
$H_m/(kJ.mol^{-1})$	264.89	278.19	294.12	312.28	332.25	353.69	376.32	399.96
$G_m/(kJ.mol^{-1})$	154.55	115.63	77.00	26.94	-22.31	-74.53	-129.52	-187.09

分别以3-溴-6-甲基哒嗪分子的标准摩尔热容 C_{pm} 、标准摩尔熵 S_m 和标准摩尔焓 H_m 为纵坐标、以温度为横坐标作出如图3、图4、图5所示的热力学关系图。

采用正规方程组进行数据拟合,得到3-溴-6-甲基哒嗪分子的标准摩尔焓 H_m 、标准摩尔热容 C_{pm}

C....与温度的关系图和关系式(图3):

 $C_{\text{\tiny pm}} \!\!=\!\! 17.47311 \!+\! 0.38979T - 1.67488 \times 10^{\text{\tiny -4}}\,T^2$


Sm与温度的关系图和关系式(图4):

 $S_m = 244.6765 + 0.45466T - 1.11071 \times 10^{-4} T^2$

H...与温度的关系图和关系式(图5):

 H_m =231.47259+0.08476T + 8.475 × 10^{-5} T^2

和标准摩尔熵引导温度之间的函数头景式ronic Publishing I结论. All rights reserved. http://www.cnki.net

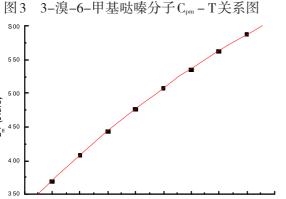


图4 3-溴-6-甲基哒嗪分子S_m-T关系图

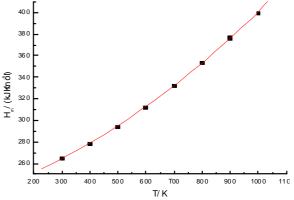


图5 3-溴-6-甲基哒嗪分子Hm-T关系图

本文采用密度泛函理论B3LYP方法和6-311++G**基函数对3-溴-6-甲基哒嗪分子的基态结构进行优化,得知3-溴-6-甲基哒嗪分子呈平面构型,具有Cs对称性,同时获得了该分子的结构基本参数。在此基础上采用密度泛函理论B3LYP方法和6-311++G**基函数对3-溴-6-甲基哒嗪分子的频率和热容、熵、焓、自由能等热力学性质进行计算,得到了这种分子的红外光谱图和标准摩尔热容Cpm、标准摩尔熵Sm、标准摩尔焓Hm与温度之间的关系图以及函数关系式,对该分子的实验数据进行了补充并促进它们其它性质的研究。

注释及参考文献:

- [1]吴剑,宋宝安,胡德禹,等.哒嗪类衍生物杀菌活性研究进展[]].农药,2008(9):625-628.
- [2]樊东波,戴立言,王晓钟,等.哒嗪合成工艺的改进[]].化学世界,2007(9):549-552.
- [3]周子彦,谢玉忠,苏忠民,等.3-羟基哒嗪及其CH₃,NO₂和C₁取代衍生物质子转移过程的理论研究[J].化学学报,2006 (12):1228-1236.
- [4]辛炳炜.3-溴-6-甲基哒嗪的合成[]].化学试剂,2008,30(2):143-144.
- [5]胡方中,母昭德,刘卓,等新型1-芳氧基-4-氯酞嗪的合成及除草活性[]].应用化学,2006(3):5-6.
- [6]辛炳炜.3,6-二甲基哒嗪的合成[]].德州学院学报,2007,(06):37-38.
- [7] 胡方中,张桂峰,邹小毛,等.3-取代苄氧基-6-(取代-1H-吡唑-1-基)哒嗪的合成与生物活性[J]. 有机化学,2008(7): 1227-1232.
- [8]熊俊如,陈稼轩,向清祥,等.手性方酞化哒嗪衍生物的合成及荧光特性研究[I].有机化学,2008,28(1),137-140.
- [9]黄辉, 李权.PdH.和YH.分子结构与分子光谱[]].四川师范大学学报(自然科学版), 2006, 29(4): 481-484.

The Conformation, Spectroscopy and Thermodynamic Properties of the 3-bromo-6-methyl Pyridoxine

XU You-hui

(Department of Architectural and Environmental Engineering, Sichuan Vocational and Technical College, Suining, Sichuan 629000)

Abstract: The 3-bromo-6-methyl pyridoxine is a new derivative of the pyridoxine, and there is no report on the research of the conformation, spectrum and thermodynamic properties. Using the Gaussian03 computational procedures in the B3LYP/6-311 ++ G** level to optimize and calculate the frequency and the thermodynamic properties, we get their infrared spectroscopy, heat capacity, entropy, enthalpy and other relationship function 1994-2016 China Academic Journal Electronic Publishing House. All rights reserved.

端、非门IV的输入端均为"1"电平,非门IV的输出端输出"0"电平,驱动器未被启动。

从延时器输出的电平为"1"时,非门III的输出端、非门IV的输入端均为"0"电平,非门IV的输出端均输出"1"电平,驱动器已被启动。

5.6 驱动器

由 Q_2 、 R_6 、 R_7 、Y 组成, 为 R_6 冲电阻、 R_7 为限流电阻、Y 蜂鸣器。

隔离器输出电平为"0"时,Q₂截止,Y不发声报警。 隔离器输出电平为"1"时,Q₂导通,导通电流I_c 经R₇使Y发声报警。

6 使用方法

6.1 充电

注释及参考文献:

- [1]童诗白.模拟电子技术基础[M].北京:清华大学出版社,2001.
- [2]康华光,邹寿彬,电子技术基础[M].北京:高等教育出版社,2001.

The Application of the Sensor Technology in Daily Life

——Alarming Cup for the Blind

WU Ming-rui

(Xichang No.1 Middle School, Xichang, Sichuan 615000)

Abstract: The sensor technology and the digital technology are widely used in our daily life. The writer makes a profound research on the application of the sensor technology and tries to give a model for the students taking part in the adolescent's science technology invention contest to write their reports.

Key words: Sensor; Logic gate; Alarm

(上接62页)

between the thermodynamic properties and the temperature. It is helpful to synthesis the Pyridoxine compounds and to research other characteristics.

Key words: 3-bromo-6-methyl pyridoxine; Conformation; Spectroscopy; Thermodynamic properties; Density functional theory

系统选用三只锂离子电池,持续使用一个月后需要对其进行充电。充电时(该项目应请视觉正常的人进行)将专用充电器一端插入杯底部的充电插孔,充电器的另一端插入220V电源插头,充电3~5小时即可。

6.2 使用

将杯底部的电源开关开启,此时LED发光管点亮,表示系统处待使用状态。

- (1)在水杯附近击掌,系统发出"叮、叮"的报警声,用以提示盲人水杯的位置所在。
- (2)用水杯接水时,在水杯内的水即将溢出的 瞬间,系统将发出"叮、叮"的报警声,用以提示盲人 水杯里水已满。