蒸压加气混凝土砌块装配式多层建筑裂缝识别方法
作者:
作者单位:

1.铜陵职业技术学院机械工程系,安徽 铜陵 244061;2.湖北省工业建筑集团第三建筑工程有限公司, 湖北 武汉,430070

作者简介:

通讯作者:

基金项目:

2023年度安徽省高校自然科学研究重点项目(2023AH052893)。


Crack Identification Method of Autoclaved Aerated Concrete Block Fabricated Multi-storey Building
Author:
Affiliation:

1.Department of Mechanical and Electrical Engineering, Tongling Polytechnic, Tongling 244061, Anhui, China;2.Hubei Provincial Industrial Construction Group Third Construction Engineering Co., Ltd., Wuhan 430070,Hubei, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    蒸压加气混凝土砌块装配式多层建筑图像背景包括不同的建筑材料、颜色、纹理等,这些背景信息导致不同形态的裂缝特征不显著、裂缝识别性能不佳。基于此,提出基于SR-UNet的蒸压加气混凝土砌块装配式多层建筑裂缝识别方法。引入Lucas-Kanade方法对裂缝图像的特征点进行跟踪,确定裂缝特征点在当前帧图像中的具体位置;构建SR-UNet网络分割模型对包含裂缝特征点的图像进行分割,并通过密集残差连接模块和注意力模块处理输入的图像,得到分割后的特征图像;通过边界损失和区域广义Dice损失构成整体损失函数,计算分割图像与真实图像之间的差异,并利用反向传播算法优化模型参数,实现装配式多层建筑裂缝的识别。实验结果表明:所提方法对装配式多层建筑裂缝的识别准确率最高值为98,优于对比的3种方法,且对光线较暗环境下的裂缝图像以及细小裂缝图像进行识别时,均能完整识别裂缝图像。

    Abstract:

    The image background of autoclaved aerated concrete block prefabricated multi story buildings includes different building materials, colors, textures, etc. These background information results in insignificant crack features of different shapes, leading to poor crack recognition performance. Based on this, a crack identification method of autoclaved aerated concrete block fabricated multi-storey building based on SR-UNet is proposed. Lucas Kanade method is introduced to track the feature points of crack images and determine the specific positions of crack feature points in the current frame image. SR-UNet network segmentation model is built to segment images containing crack feature points, and process the input images through dense residual connection modules and attention modules to obtain segmented feature images. By using boundary loss and region generalized Dice loss, an overall loss function is formed, the difference between the segmented image and the real image is calculated, and the model parameters are optimized using backpropagation algorithm to achieve the recognition of cracks in prefabricated multi story buildings. The experimental results show that the proposed method has the highest recognition accuracy of 98% for cracks in prefabricated multi story buildings, which is superior to the three compared methods. Moreover, it can fully recognize crack images in low light environments and small crack images.

    参考文献
    相似文献
    引证文献
引用本文

左斌峰,吴慧琼,沈阳.蒸压加气混凝土砌块装配式多层建筑裂缝识别方法[J].西昌学院学报(自然科学版),2025,39(1):33-40.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-12-09
  • 最后修改日期:2025-02-07
  • 录用日期:2025-02-09
  • 在线发布日期: 2025-05-16