基于改进多全卷积网络( MFCN)的排球动作识别技术研究
作者:
作者单位:

安徽城市管理职业学院公共教学部,安徽 合肥 230011

作者简介:

通讯作者:

基金项目:

2023年安徽省高校科研重点项目(2023AH051489)。


Research on Volleyball Action Recognition Technology Based on Improved Multiple Fully Convolutional Networks (MFCN)
Author:
Affiliation:

Department of Public Teaching , Anhui Vocational College of City Management, Hefei 230011, Anhui, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对排球运动群体动作识别精度差、识别率低的问题,提出了一种智能化的排球动作识别技术。该技术采用多全卷积网络(multi fully convolutional networks, MFCN)提取运动者特征数据,并通过马尔科夫随机场修正模型;然后引入双重注意力模型强化特征关注,降低关键特征数据丢失问题。运用该模型对排球动作识别进行测试,结果表明:在单人排球动作识别中准确率为0.986,识别精度与收敛速度高;在群体排球动作识别中准确率为0.962,优于同类模型。研究模型在实际场景应用中具有出色的效果,可为体育动作的识别及视觉技术的改进提供技术参考。

    Abstract:

    Aiming at the problems of poor recognition accuracy and low recognition rate of group actions in volleyball sports, an intelligent volleyball action recognition technology is proposed. The technology uses multi fully convolutional networks (MFCN) to extract the feature data of the antheletes and corrects the model through the Markov random field. Then, the dual attention model is introduced to strengthen the focus on feature attention and reduce the problem of key feature data loss. Using the model to test volleyball action recognition, the results show that the accuracy rate of single-person volleyball action recognition is 0.986, and the recognition accuracy and convergence speed are high. The accuracy rate of group volleyball action recognition is 0.962, which is better than that of similar models. The research model has excellent results in practical scene applications, and can provide a technical reference for the recognition of sports actions and the improvement of visual technologies..

    参考文献
    相似文献
    引证文献
引用本文

安庆标.基于改进多全卷积网络( MFCN)的排球动作识别技术研究[J].西昌学院学报(自然科学版),2024,38(4):79-86.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-08-25
  • 最后修改日期:2024-12-05
  • 录用日期:2024-09-23
  • 在线发布日期: 2025-01-24