Journal of Xichang College • Natural Science Edition

# 第一性原理研究立方相尖晶石二元氮化物

唐 军1,丁迎春1,徐 明2

(1. 成都信息工程学院 电子工程系,四川 成都 610225;

2.四川师范大学 物理与电子工程学院&固体物理研究所,四川 成都 610068)

【摘 要】本文基于密度泛函理论,采用第一性原理赝势法,计算得到了立方相二元氮化物 $\gamma$ -A<sub>3</sub>N<sub>4</sub>(A:C、Si、Ge、Sn(Group IVB))的晶格参数,体系总能及原胞体积、键长、密度、体模量,并分析了带隙、静介电函数 $\varepsilon$ (0)、光学吸收系数等性质,并在计算的基础上将结果与实验作了详细比较,两者符合的非常好。本文的研究表明对 $\gamma$ -A<sub>3</sub>N<sub>4</sub>(A:C、Si、Ge、Sn(Group IVB))结构,计算体模量时用LDA要优于GGA,但GGA较LDA给出更精确的能量和结构。另外,第一性原理可以准确地计算 $\gamma$ -C<sub>3</sub>N<sub>4</sub>、 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>和 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>体系,而对 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>物质则不适合。

【关键词】第一性原理;体模量;局域密度近似(LDA)

【中图分类号】0742 【文献标识码】A 【文章编号】1673-1891(2008)03-0065-05

#### 1 引言

氮化硅具有优良物理和化学性能吗。长期以来 人们对该材料的研究表现了极大的注意力,也有很 多报道[2-5]。1999年报道了第三相Si<sub>3</sub>N<sub>4</sub>是立方尖晶 石相(γ-Si<sub>3</sub>N<sub>4</sub>也叫c-Si<sub>3</sub>N<sub>4</sub>)<sup>6</sup>。它是在压强达到15 Gpa,温度高达2000K时合成的。在此基础上,相继 在高温高压下合成了 γ-Ge<sub>3</sub>N<sub>4</sub><sup>[7,8]</sup>、γ-Sn<sub>3</sub>N<sub>4</sub><sup>[9,10]</sup>。由 于合成的条件都非常困难,所以用计算机模拟方法 对立方相二元氮化物 γ-A<sub>3</sub>N<sub>4</sub>(A:C、Si、Ge、Sn( Group IVB))的研究是必须的。但是,关于第一性原 理的GGA和LDA计算精度的问题却一直存在争议, 为澄清争议,本文尝试运用基于密度泛函理论的第 一性原理,对立方相二元氮化物模型结构进行计 算,交换关联能函数分别采用LDA和GGA描述,从 而可将计算结果与实验数据和其它理论计算值作 比较,进而确定哪一种近似(LDA/GGA)更符合 γ-A<sub>3</sub>N<sub>4</sub>(A:C、Si、Ge、Sn(Group IVB))结构的研究。

### 2 计算方法和理论模型

#### 2.1 计算方法

本文将用V(r)为Vanderbilt的超软赝势<sup>[11]</sup>,  $\mu_{sc}$ (r)为电子相关势,采用局域密度近似(LDA)<sup>[12]</sup>和广 义梯度近似(GGA–PW91)<sup>[13]</sup>描述,  $\phi_i(r)$ 为单电子函 数。对模型结构的优化将用BFGS(Broyden Fletcher Glodfarb and Shanno, BFGS)算法<sup>[14]</sup>, Brillouin 区取4×4×4个K–point,基态能量的计算应用Pulay 密度混合法<sup>[15]</sup>,精度为2.0×10<sup>-6</sup>eV/原子,平面波截 止能 E<sub>cut</sub>设为220 eV,单原子能量的收敛标准为 2.0×10<sup>-5</sup>eV,表面能量的计算精度为2.0×10<sup>-6</sup>eV/原 子。所有的计算采用CASTEP(Cambridge serial total energy package)软件<sup>[16]</sup>包中的几何结构优化程 序和弹性模量程序完成。

我们认为,密度泛函计算结果的精度,取决于交换关联势质量的好坏。局域密度近似(LDA)是实用中最简单有效的近似<sup>[12]</sup>。它最早由Slater在1951年提出并应用<sup>[17,18]</sup>,甚至早于密度泛函理论。这种近似假定空间某点的交换关联能,只与该点的电荷密度有关,且等于同密度的均匀电子气的交换关联能。LDA近似在大多数的材料计算中展示了巨大的成功<sup>[19]</sup>,但是对于与均匀电子气或者空间缓慢变化的电子气相差太远的系统,LDA不适用。广义梯度近似GGA<sup>[20]</sup>计入某处附近的电荷密度对交换关联能的影响,这种近似是半局域化的。一般地,对于开放的系统,GGA比LDA给出更精确的能量和结构。

#### 2.2 理论模型

 $γ - A_3N_4$ 属空间群 F-d3m,根据实验数据,我们 选择 γ-Si<sub>3</sub>N<sub>4</sub>晶格常数为 a=0.77453 nm, α = β = γ=90° 的初始数据来建立一个晶胞,在这个晶胞 中共有 56 个原子(Si 有 24 个, N 有 32 个),而这个晶 胞并不是它的原胞,根据对称性找出它的原胞,它 包含 2 个 Si<sub>3</sub>N<sub>4</sub>分子,总共 14 个原子。大球是 Si 原 子,小球为N原子。在此模型基础上,我们用C、Ge、 Sn取代Si形成相应的物质,再用几何优化模块优化 该结构。γ-A<sub>3</sub>N<sub>4</sub>是尖晶石结构,所以模型中阳原子 的位置分为两类,一类 A,占据 8a 位,为四配位原 子,另一类 B,占据 16d 位,为八配位原子。而所有的 N原子都占据 32e 位,为四配位原子。这个结构是 岩层结构和闪锌矿结构的组合<sup>[21]</sup>。γ-A<sub>3</sub>N<sub>4</sub>可以表 示为 AB<sub>2</sub>N<sub>4</sub>,A就是四配位原子,B是八配位原子。

3 计算结果和讨论

收稿日期:2007-08-04 ?1984-2016 China Academic Lournal Electronic Publishing House, All rights reserved。 http://www.cnki.net 作者简介:唐<sup>···</sup>军(1974----),男,助教,主要双事微波电路和电磁理论方面的教学和科研工作。 http://www.cnki.net

## 3.1 原胞结构优化结果

表1  $\gamma - A_3N_4$ 原胞结构参量的优化结果

|                                          |                           | Tatal energy( $eV$ ) | a(nm)       | $V(nm^3)$ | N-A(4)   | N-B(8)   | $\rho$ (g/cm <sup>3</sup> ) | B(Gpa)                 |
|------------------------------------------|---------------------------|----------------------|-------------|-----------|----------|----------|-----------------------------|------------------------|
|                                          |                           | 体系总能                 | 晶格常数        | 体积        | (nm)     | (nm)     | 密度                          | 体模量                    |
| <b>γ</b> –C <sub>3</sub> N <sub>4</sub>  | GGA                       | -3090.14274          | 0.674128    | 0.306356  | 0.152605 | 0.16478  | 3.99198                     | 289.59373              |
|                                          |                           |                      |             |           |          |          |                             | ± 15.769               |
|                                          | LDA                       | -3080.88586          | 0.69263     | 0.299772  | 0.151329 | 0.163688 | 4.07966                     | 411.70187              |
|                                          |                           |                      |             |           |          |          |                             | ± 21.828               |
|                                          | $OLCAO^{[24]}$            |                      | 0.6841      |           | 0.1555   | 0.1667   |                             | 369                    |
|                                          | VASP <sup>[26]</sup>      |                      | 0.68952     |           | 0.1584   | 0.673    |                             | 377.6                  |
| γ-Si <sub>3</sub> N <sub>4</sub>         | GGA                       | -2845.68858          | 0 770144    | 0.45789   | 0 176350 | 0 187153 | 4.07970                     | 264.02738              |
|                                          | 0011                      |                      | 0.770111    |           | 0.170550 | 0.107155 |                             | ± 3.955                |
|                                          | LDA                       | -2835.39             | 0.769516    | 0.455672  | 0.176433 | 0.186877 | 4.08970                     | 279.95603              |
|                                          |                           |                      |             |           |          |          |                             | ± 5.318                |
|                                          | 实验值[27,28]                |                      | 0.78        | 0.464638  | 0.1795   | 0.1881   | 3.930                       | 290                    |
|                                          |                           |                      | $\pm 0.003$ |           |          |          |                             | 270                    |
|                                          | OLCAO <sup>[25, 27]</sup> |                      | 0.78374     |           | 0.1830   | 0.1885   | 3.873                       | 280                    |
| γ-Ge <sub>3</sub> N <sub>4</sub>         | GGA                       | -2837.97217          | 0.811595    | 0.534586  | 0.187044 | 0.196576 | 6.80380                     | $217.08428 \pm 4.885$  |
|                                          | LDA                       | -2828.07620          | 0.807861    | 0.527243  | 0.186180 | 0.195674 | 6.89857                     | 245.11387 ± 4.805      |
|                                          | 实验值[8,29]                 |                      | 0.8213      |           | 0.1888   | 0.1992   |                             | 296                    |
|                                          | OLCAO <sup>[24]</sup>     |                      | 0.8304      |           | 0.1913   | 0.2012   |                             | 231                    |
|                                          | VASP <sup>[26]</sup>      |                      | 0.82112     |           | 0.1907   | 0.1982   |                             | 268.6                  |
| $\gamma$ –Sn <sub>3</sub> N <sub>4</sub> | GGA                       | -2765.04153          | 0.905226    | 0.741773  | 0.211107 | 0.217927 | 7.38021                     | $135.95232 \pm 1.1221$ |
|                                          | LDA                       | -2753.63839          | 0.903382    | 0.737249  | 0.210607 | 0.217520 | 7.42550                     | 139.65108 ± 4.279      |
|                                          | 实验值[11]                   |                      | 0.9037      |           |          |          |                             |                        |
|                                          | OLCAO <sup>[26]</sup>     |                      | 0.89651     |           | 0.2082   | 0.2165   |                             | 203.6                  |
|                                          | VASP <sup>[30]</sup>      |                      | 0.89544     |           | 0.2077   | 0.2162   |                             | 187.2                  |

注:N-A(4)表示的是N与四配位的原子相连的键长,N-B(8)表示的是N与八配位的原子相连的键长。

我们通过计算并多次优化步数,使自洽精度与体系能量都较好地收敛,均小于设定标准,最后使体系的总能量达到最小,得到结果如表1。数据显示用GGA方法计算的体系能量都比用LDA方法计算的要低,都相差10 eV左右,说明用GGA方法优化时各种模型更稳定。

在晶格常数的比较中,对于 $\gamma$ -C<sub>3</sub>N<sub>4</sub>,用GGA方 法计算的结果比用LDA要小一些,而其它模型都是 用GGA比用LDA计算的大。对于 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>模型,应 用GGA方法得到的结果更接近实验值,而用 OLCAO方法计算的结果比实验值高;对 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>模 型,应用GGA、LDA方法计算的结果都比实验值和 用OLCAO方法计算的值低;用OLCAO方法的计算 结果接近实验值。对 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>模型,用GGA和LDA 方法计算得到的结果都接近实验值,其中LDA方法 结果都比实验值低。

各种模型优化后的体积值,GGA方法比LDA方 法得到结果都要大。γ-Si<sub>3</sub>N<sub>4</sub>模型报道的实验值与 GGA方法计算的值更接近一些,但计算结果表明 GGA和LDA方法计算的值都要低于实验值。

通过计算得到各模型的键长,用GGA方法的结 果都比用LDA方法的结果要大,但在 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>模型 中的N-A(4)键长例外。 $\gamma$ -C<sub>3</sub>N<sub>4</sub>的键长,GGA方 法、LDA方法计算结果都比OLCAO小; $\gamma$ -Si<sub>3</sub>N<sub>4</sub>、  $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>模型中的键长,用GGA和LDA方法得到的 结果都比实验值和用OLCAO方法得到的结果小;  $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>模型中的键长,用GGA和LDA方法得到的 值都比OLCAO和VASP方法得到的结果大。

结果接近实验值。对γ-Sn<sub>3</sub>N<sub>4</sub>模型,用GGA和LDA 从用LDA和GGA方法计算各物质的密度结果 方法计算得到的结果都接近实验值,其中LDA方法 中可以看出,LDA方法计算的结果都高于GGA。 更接近实验值,用OLCAO疗法和WASPI方法得到的lishin对于Ws=Sch.模型,实验YE测出结果为3.930 JACH3, 比LDA和GGA都要低。

从表中各物质的体模量的数据可以看到,用 LDA比GGA的计算结果都要大。在计算的四种模型中 $\gamma$ -C<sub>3</sub>N<sub>4</sub>的体模量非常大,我们用LDA方法得 到其值大约411 GPa,这样的值很接近金刚石的体 模量435Gpa和c-C<sub>3</sub>N<sub>4</sub>(cubic-C<sub>3</sub>N<sub>4</sub>)的427Gpa<sup>[17]</sup>,说 明 $\gamma$ -C<sub>3</sub>N<sub>4</sub>也是一种硬度非常高的物质。从实验的 结果上看 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>和 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>的体模量的结果相差 不大,但用LDA方法计算 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>的体模量非常接 近实验结果,而计算 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>的体模量却与实验结 果相差很大。用LDA和GGA计算 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>的体模 量相差不大,但是却和用OLCAO方法和VASP方法 计算的结果相差非常的大,这说明对于 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>体 系,用GGA和LDA有很大的误差。

通过上面的分析可以看出,对于 γ-A<sub>3</sub>N<sub>4</sub>(A:C、 Si、Ge、Sn)(Group IVB),GGA 在计算晶格常数、键 长、密度等其它的性质方面要比LDA 方法要精确一 些,但在计算物质的体模量时,LDA 方法更接近真 实值,所以我们在对该类物质进行研究时,应将两 种方法结合。

3.2 带隙计算结果比较





由图1可以看出,对于 $\gamma$ -C<sub>3</sub>N<sub>4</sub>、 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>和  $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>,用GGA、LDA和OLCAO三种方法计算的 带隙<sup>[24]</sup>相当符合,而对于 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>,用GGA、LDA计 算得到的结果与OLCAO方法的结果<sup>[24]</sup>却相差很 大。我们在前面计算 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>模型的体模量也发现 类似情况。这说明GGA和LDA方法都不适合  $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>模型,不能把它的一些性质较好地表示出 来。在对 $\gamma$ -C<sub>3</sub>N<sub>4</sub>、 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>和 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>的计算中可 以看到,GGA方法计算的带隙要高于LDA方法计 算的结果。V. Milman等人<sup>[29]</sup>指出,用密度泛函理论 LDA方法求解带隙时会低估带隙,我们计算的结果 正好能解释这种现象。



图3 GGA方法计算的各种物质的吸收系数 我们通过计算得到各物质的静介电函数的实 部,可以看到用GGA方法和LDA方法相差不大。这 几种物质中,  $\gamma$  – C<sub>3</sub>N<sub>4</sub>的  $\epsilon$  (0) 最大, 约为 7.56;  $\gamma - Sn_3N_4$ 的  $\varepsilon(0)$ ,用GGA 计算,其结果要稍微高于 LDA, 与 $\gamma$  –C<sub>3</sub>N<sub>4</sub>的 $\varepsilon$ (0)接近, 而LDA 计算结果为 7.18 左右;其次是 γ-Ge<sub>3</sub>N<sub>4</sub>的 ε(0)为5.22 左右;  $\gamma$  -Si<sub>3</sub>N<sub>4</sub>的  $\varepsilon$  (0)最小,为4.12 左右。Mo 等人<sup>[23]</sup>计算 的  $\gamma$  – C<sub>3</sub>N<sub>4</sub> 和  $\gamma$  – Si<sub>3</sub>N<sub>4</sub> 的  $\epsilon$  (0) 分别为 7.7, 4.7, γ-C<sub>3</sub>N<sub>4</sub>的计算结果与我们计算的很接近,但 γ-Si<sub>3</sub>N<sub>4</sub>的数据比我们计算的结果大0.6左右。 Ching 等人<sup>[28]</sup>在2006年计算 γ-Sn<sub>3</sub>N<sub>4</sub>的 ε(0)为6.8, 比我们计算的要低0.4左右。具有很高的静态介电 常数 $\varepsilon(0)$ 意味着该物质有很大折射系数,实验上得 到的三种物质中,  $\gamma$  -Sn<sub>3</sub>N<sub>4</sub>比  $\gamma$  -Si<sub>3</sub>N<sub>4</sub>和  $\gamma$  -Ge<sub>3</sub>N<sub>4</sub>的  $\varepsilon(0)$ 要高,因此它可作为好的折射材料,对于一定 的光学元件有潜在的应用。由于在光学性质上,用 LDA 方法和GGA方法计算没有什么区别,本文只列 出了用GGA 方法计算的吸收系数。 y-Si<sub>3</sub>N<sub>4</sub>的吸收 最高,其次是 $\gamma$ -C<sub>3</sub>N<sub>4</sub>,它的峰形变宽,峰的个数变 多,再次是 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>和 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>。光学吸收系数主要 是由主峰是N的2p电子跃迁到导带底的结果,由于 同族元素原子序数的增加,N的2p电子跃迁到导带 底的能量会减小,所以从图3中可以看到从C到Sn, 主峰位置向低能(长波方向)移动。

3.3 兜学程质研究a Academic Journal Electronic Publishing I结论. All rights reserved. http://www.cnki.net

本文的研究表明对 $\gamma$ -A<sub>3</sub>N<sub>4</sub>(A:C、Si、Ge、Sn(Group IVB)),计算体模量时用LDA要优于GGA,但GGA较LDA给出更精确的能量和结构。CASTEP程序包及第一性原理可以准确地计算 $\gamma$ -C<sub>3</sub>N<sub>4</sub>、

 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>和 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>体系,但对 $\gamma$ -Sn<sub>3</sub>N<sub>4</sub>结构不实用,即对于 $\gamma$ -C<sub>3</sub>N<sub>4</sub>、 $\gamma$ -Si<sub>3</sub>N<sub>4</sub>和 $\gamma$ -Ge<sub>3</sub>N<sub>4</sub>体系,它能为我们提供可靠的计算工具和理论方法,特别是它可以预测物质的性质,并为找到新物质提供帮助。

#### 注释及参考文献:

- [1]Wang Wei-xiang, Li Dao-huo,Liu Zong-cai, et al. Strong piezoelectricity in nanosized silicon nitride prepared bylaserinduced chemical vapor deposition[J]. Applied Physics Letters, 1993,62:321.
- [2]Bauer E,Wei Y,Muller T,et al. Reactive crystal growth in two dimensions: silicon nitride on Si(111)[J]. Physical Review B, 1995, 51:17891.
- [3]Dufour G,Rochet F,Roulet H,et al. Contrasted behavior of Si(001) and Si(111) surfaces with respect to NH<sub>3</sub> adsorption and thermal nitridation:a N 1s and Si2p core level study with synchrotron radiation[J]. Surface Science, 1994, 304:33–47.
- [4] 翟光杰,杨建树,陈显邦,等. 生长于Si(111)上的氮化硅薄膜表面结构[J].物理学报,2000,49:347-353.
- [5]陈俊芳,王卫乡,刘颂豪,等. 氮化硅薄膜的微结构[J]. 物理学报,1998,47:1529-1535.
- [6]Zerr A, Miehe G, Serghiou G, et al. Synthesis of cubic silicone nitride[J]. Nature(London), 1999,400:340-342.
- [7]Leinenweber K, O'Keeffe M, Somayazulu M, et al. Synthesis and structure refinement of the spinel, gamma–Ge<sub>3</sub>N<sub>4</sub>[J]. Chemistry–A European Journal, 1999, 5: 3076 3078.
- [8]Serghiou G, Miehe G, Tschauner O, et al. Synthesis of a cubic Ge<sub>3</sub>N<sub>4</sub> phase at high pressures and temperatures[J]. Journal of Chemical Physics,1999,111:4659 4662.
- [9]Scotti N, Kockelmann W, Senker J, et al. Sn3N4, a tin(IV) nitride Syntheses and the first crystal structure determination of a binary tin–nitrogen compound[J]. Zeitschrift f ü r anorganische und allgemeine Chemie, 1999, 625: 1435 1439.
- [10]Shemkunas M P, Wolf,G H, Leinenweber K, et al. Rapid synthesis of crystalline spinel tin nitride by a solid-state metathesis reaction[J]. Journal of the American Ceramic Society, 2002, 85: 101–104.
- [11]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990,41 : 7892-7895.
- [12]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140: 1133-.
- [13]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation-energy[J]. Physical Review B, 1992, 45: 13244–13249.
- [14]Fischer T H, Almlof J. General methods for geometry and wave function optimization[J]. Journal of Physical Chemistry, 1992, 96:9768–9774.
- [15]Kress G, Furthm üller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54: 11169–11186.
- [16]Segall M D, Lindan P L, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics-condensed Matter, 2002, 14:2717-2744.
- [17]Slater J C. A simplification of the hartree-fock method [J]. Physical Review, 1951, 81:385-390.
- [18]Slater J C. Quantum Theory of Molecules and Solids: v. 2[M]. New York: Mcgraw-Hill,1974
- [19]Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects[J]. Reviews of Modern Physics, 1989, 61: 689-746.
- [20]Langreth D C, Perdew J P. Theory of nonuniform electronic systems.1. analysis of the gradient approximation and a generalization that works[J]. Physical Review B, 1980, 21: 5469–5493.
- [21]Ching W Y, Mo S D, Tanaka I, et al. Prediction of spinel structure and properties of single and double nitrides[J]. Physical Review B, 2001, 63:064102.
- [22]P Mori-S á nchez, M Marqu é s, A Beltr á n, et al. Origin of the low compressibility in hard nitride spinels[J]. Physical Review B, 2003, 68:064115
- [23]Mo S D, Ouyang L Z, and Ching W Y, et al. Interesting physical properties of the new spinel phase of Si<sub>3</sub>N<sub>4</sub> and C<sub>3</sub>N<sub>4</sub>[J]. Physical Review Letters, 1999, 83: 5046–5049.
- [24]Ching W Y, Mo S D, Ouyang L Z et al. Theoretical prediction of the structure and properties of cubic spinel nitrides[J].
- ?1994-2017 China Academic Society 2002 85, 751 80 House. All rights reserved. http://www.cnki.net

- [25]J.Z. Jiang, K. Stahl, R.W. Berg, et al. Structural characterization of cubic silicon nitride[J]. Europhysics Letters, 2000, 51: 62-67.
- [26]A. Zerr, M. Kempf, M. Schwarz, et al. Elastic moduli and hardness of cubic silicon nitride[J]. Journal of the American Ceramic Society, 2002, 85: 86–90.
- [27]M S Somayazulu, K Leinenweber, H Hubert, et al. The Raman spectra of the hexagonal and cubic (spinel) forms of Ge<sub>3</sub>N<sub>4</sub>: an experimental and theoretical study[J]. Solid State Communications, 2000, 114: 137–142.
- [28]Ching W Y and Rulis P. Ab initio calculation of the electronic structure and spectroscopic properties of spinel gamma-Sn<sub>3</sub>N<sub>4</sub>[J]. Physical Review B, 2006, 73: 045202.

[29]Milman V and Warren M C. Elasticity of hexagonal BeO[J]. Journal of Physics-Condensed Matter, 2001, 13: 241-251.

# The First-Principle Studies of the Cubic Single Spinel Nitrides

TANG Jun<sup>1</sup>, DING Ying-chun<sup>1</sup>, XU Ming<sup>2</sup>

(1.Department of Electronic, Chengdu University of Information, Chengdu, Sichuan 610225; 2.Institute of Solid State Physics and Electronic Engineering, Sichuan Normal University, Chengdu, Sichuan 610068)

Abstract: The first-principle with pseudopotentials method based on the Density Functional Theory(DFT) was applied to calculate the lattice parameter, total energy and volume, bond length, density, bulk modulus (B) of primitive cell of the single spinel nitrides  $\gamma - A_3N_4(A:C,Si,Ge,Sn(Group IVB))$  and discussed to gap energy, static dielectric constant  $\varepsilon$  (0) and optical absorption peak. Results of calculation are still in excellent agreement with the experimental values. To  $\gamma - A_3N_4(A:C,Si,Ge,Sn(Group IVB))$ , in calculation bulk modulus, LDA was excellent than GGA, but GGA provided a more adequate description of the structural properties and energy of the system than LDA. In this paper, except  $\gamma - Sn_3N_4$ , the First-Principle can accurately calculate the system of  $\gamma - C_3N_4$ ,  $\gamma - Si_3N_4$  and  $\gamma - Ge_3N_4$ .

Key words: The first-principle; Bulk modulus; LDA